Teorema di Rolle

Erasmo Modica

Enunciato del teorema

Il Teorema di Rolle afferma che se una funzione è continua in un intervallo chiuso e limitato [a,b], derivabile in ogni punto dell'intervallo aperto (a,b), e se la funzione assume gli stessi valori agli estremi dell'intervallo, allora esiste almeno un punto c nell'intervallo aperto (a,b) in cui la derivata della funzione si annulla, cioè f'(c) = 0.

Significato Geometrico

Dal punto di vista geometrico, questo significa che se tracciamo il grafico di una funzione continua e derivabile su un intervallo chiuso, e i valori della funzione agli estremi dell'intervallo sono uguali, allora c'è almeno un punto all'interno dell'intervallo in cui la tangente è orizzontale, cioè la pendenza della tangente è zero. In altre parole, c'è almeno un punto in cui la funzione presenta un massimo o un minimo locale.

Esempi di Applicazione

Esempio con una Funzione Algebrica

Supponiamo di avere la funzione $f(x) = x^2 - 4x + 3$ sull'intervallo [1, 3]. La funzione è continua sull'intervallo [1, 3] e derivabile in ogni punto dell'intervallo (1, 3). Inoltre, f(1) = 0 e f(3) = 0. Possiamo applicare il Teorema di Rolle e concludere che esiste almeno un punto c nell'intervallo (1, 3) in cui f'(c) = 0.

Esempio con una Funzione Esponenziale

Consideriamo la funzione $f(x) = e^x$ sull'intervallo [-1,1]. La funzione è continua sull'intervallo [-1,1] e derivabile in ogni punto dell'intervallo aperto (-1,1). Tuttavia, $f(-1) \neq f(1)$, quindi non possiamo applicare il Teorema di Rolle.

Esempio con una Funzione Logaritmica

Prendiamo la funzione $f(x) = \ln(x)$ sull'intervallo [1, 3]. La funzione è continua sull'intervallo [1, 3] e derivabile in ogni punto dell'intervallo aperto (1, 3).

Tuttavia, $f(1) \neq f(3)$, quindi non possiamo applicare il Teorema di Rolle.

Esempio con una Funzione Goniometrica

Consideriamo la funzione $f(x) = \sin(x)$ sull'intervallo $[0, 2\pi]$. La funzione è continua sull'intervallo $[0, 2\pi]$ e derivabile in ogni punto dell'intervallo aperto $(0, 2\pi)$. Inoltre, $f(0) = f(2\pi) = 0$. Possiamo applicare il Teorema di Rolle e concludere che esiste almeno un punto c nell'intervallo $(0, 2\pi)$ in cui f'(c) = 0.